The q-deformation of symmetric functions and the symmetric group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L317
(http://iopscience.iop.org/0305-4470/24/7/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:10

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The \boldsymbol{q}-deformation of symmetric functions and the symmetric group

M A Salam \dagger and B G Wybourne $\ddagger \S$
\dagger Department of Physics, University of Canterbury, Christchurch, New Zealand
\ddagger Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Received 13 December 1990

Abstract

The \boldsymbol{q}-deformation of symmetric functions is introduced leading to \boldsymbol{q}-analogues of many well known relationships in the theory of symmetric functions. q-deformed scalar products are developed and used to define q-dependent symmetric functions. The symmetric functions commonly associated with the names Hall-Littlewood, Schur and Jack are all special cases of the q-deformation of Macdonald's new symmetric functions $P_{\mathrm{A}}(s, t)$. A q-analogue of the spin and ordinary characters of S_{n} is given and illustrated by the explicit calculation of examples of q-deformed characters. The methods used are closely parallel to those of quantum groups.

Symmetric functions find many applications in physics. The Schur functions (or S-functions) arise naturally in the character theory of the symmetric group while the Hall-Littlewood functions find application in the theory of solitons (Nimmo 1990). Macdonald has given a definitive account of both of these types of symmetric functions (Macdonald 1979) as well as their various specializations such as Schur's Q-functions that arise in the projective representations of the symmetric group. Throughout we shall follow the notation defined in Macdonald's book (Macdonald 1979).

The characters of the Hecke algebra $H_{n}(q)$ of type A_{n-1} may be calculated by generalizing the power sum symmetric functions as (King and Wybourne 1990)

$$
\begin{equation*}
p_{r}(q ; x)=\sum_{a, b=0, a+b+1=r}^{r-1}(-1)^{b} q^{a} s_{\left(a+1,1^{b}\right)}(x) \tag{1}
\end{equation*}
$$

and for $\rho=\left(\rho_{1}, \rho_{2}, \ldots\right)$ letting

$$
\begin{equation*}
p_{\rho}(q ; x)=p_{\rho_{1}}(q ; x) p_{\rho_{2}}(q ; x) \ldots \tag{2}
\end{equation*}
$$

This could be thought of as a particular type of q-deformation of the power sum symmetric function. When $q \rightarrow 1$ (1) becomes the standard relationship between power sum symmetric functions $p_{r}(x)$ and Schur functions $s_{\lambda}(x)$. Indeed if we introduce a q-number $[n]_{q}$ such that

$$
\begin{equation*}
[n]_{q}=1+q+q^{2}+\ldots+q^{n} \tag{3}
\end{equation*}
$$

§ On leave from: University of Canterbury, Christchurch, New Zealand.
with $[0]_{q}=1$, we may obtain a q-analogue of the usual relationship between the power sum symmetric functions $p_{n}(x)$ and, for example, the complete symmetric functions $h_{n}(x)$ by writing

$$
[n-1]_{q}!h_{n}=\left|\begin{array}{ccccc}
p_{1} & -[0] & & & \ddots \tag{4}\\
p_{2} & p_{1} & -[1] & & \\
p_{3} & p_{2} & p_{1} & -[2] & \\
\vdots & \vdots & & \ddots & \\
p_{n} & p_{n-1} & \cdots & & p_{1}
\end{array}\right|
$$

where the power sum symmetric functions $p_{r}=\cdot p_{r}(q ; x)$. We have, for example

$$
\begin{equation*}
h_{3}(x)=\frac{p_{1}^{3}+(q+2) p_{21}+(q+1) p_{3}}{(1+q)\left(1+q+q^{2}\right)} \tag{5}
\end{equation*}
$$

For $q=1$ we obtain the usual result

$$
\begin{equation*}
h_{3}=\frac{p_{1}{ }^{3}+3 p_{21}+2 p_{3}}{6} \tag{6}
\end{equation*}
$$

The coefficients in (6) are just the numbers

$$
\begin{equation*}
c(\lambda)=z_{\lambda}^{-1} \tag{7}
\end{equation*}
$$

where as usual (Macdonald 1979, p 17)

$$
\begin{equation*}
z_{\lambda}=\prod_{i} i^{m_{i}} m_{i}! \tag{8}
\end{equation*}
$$

that is

$$
\begin{equation*}
h_{n}(x)=\sum_{|\lambda|=n} z_{\lambda}^{-1} p_{\lambda}(x) \tag{9}
\end{equation*}
$$

The q-analogue of (9) is

$$
\begin{equation*}
h_{n}(x)=\sum_{|\lambda|=n}\left(z_{\lambda}^{q}\right)^{-1} p_{\lambda}(q ; x) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}^{q}=\prod_{i}[i-1]_{q}^{m_{i}}\left[m_{i}-1\right]_{q}! \tag{11}
\end{equation*}
$$

The above results suggest that it could be useful to explore other types of q deformations of symmetric functions not unlike those considered under the term of quantum groups (cf Drinfeld 1988). It is possible to consistently define various types of q-deformations of symmetric functions such as in terms of the q-numbers

$$
\begin{equation*}
[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}} \tag{12}
\end{equation*}
$$

Macdonald has introduced a more general symmetric function $P_{\lambda}(s, t)$ (Macdonald 1988) indexed by partitions λ and involving two indeterminates s and t. It is useful to consider their q-deformation.

Let $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$ be two sequences of indeterminates over $\mathscr{2}(t)$ where t is another indeterminate and define (Macdonald 1979)

$$
\begin{equation*}
P(x, y ; t)=\prod_{i, j} \frac{\left(1-t x_{i} y_{j}\right)}{\left(1-x_{i} y_{j}\right)} . \tag{13}
\end{equation*}
$$

A scalar product $\langle,\rangle_{(t)}$ over $\mathscr{2}(t)$ may be defined as

$$
\begin{equation*}
\left\langle p_{\lambda}, p_{\mu}\right)_{(t)}=\delta_{\lambda \mu} z_{\lambda}(t) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}(t)=z_{\lambda} \prod_{i}\left(1-t^{\lambda_{i}}\right)^{-1} \tag{15}
\end{equation*}
$$

Let s be another independent indeterminate and define a scalar product $\langle,\rangle_{(s, t)}$ over $2(s, t)$ as follows

$$
\begin{equation*}
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{(s, t)}=\delta_{\lambda \mu} z_{\lambda}(s, t) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}(s, t)=z_{\lambda} \prod_{i} \frac{\left(1-s^{\lambda_{i}}\right)}{\left(1-t^{\lambda_{i}}\right)} \tag{17}
\end{equation*}
$$

We can define a q-deformed scalar product $\langle,\rangle_{(s, t)}^{(q)}$ over $\mathscr{Q}_{q}(s, t)$ as

$$
\begin{equation*}
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{(s, t)}^{(q)}=\delta_{\lambda \mu} z_{\lambda}^{q}(s, t) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{\lambda}^{q}(s, t)=\prod_{i}[i-1]_{q}^{m_{i}}\left[m_{i}-1\right]_{q}!\prod_{j}^{l(\lambda)} \frac{\left(1-s^{\left[\lambda_{j}-1\right]_{q}}\right)}{\left(1-t^{\left[\lambda_{j}-1\right]_{q}}\right)} . \tag{19}
\end{equation*}
$$

We call $P_{\lambda}^{q}(s, t)$ the q-deformation of the symmetric function $P_{\lambda}(s, t)$.
A q-analogue of (13) can be defined as

$$
\begin{equation*}
\mathscr{P}_{q}=\prod_{i, j}\left\{\frac{\left(t x_{i} y_{j} ; s\right)_{\infty}}{\left(x_{i} y_{j} ; s\right)_{\infty}}\right\}_{q} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
(a ; s)_{\infty}=\prod_{r=0}^{\infty}\left(1-a s^{r}\right) \tag{21}
\end{equation*}
$$

and the notation $\{b\}_{q}$ is used for the q-deformed expansion of b. We then have

$$
\begin{equation*}
\mathscr{P}_{q}(x, y ; s, t)=\sum_{\lambda} z_{\lambda}^{q}(s, t)^{-1} p_{\lambda}(x) p_{\lambda}(y) . \tag{22}
\end{equation*}
$$

The above result follows upon computing $\exp \left(\log \mathscr{P}_{q}\right)$ and leads to a general definition of q-deformed symmetric functions in which the usual symmetric functions, such as Hall-Littlewood, Jack, Schur and Q-functions, become associated with particular values (q, s, t). Setting $q=1$ yields the usual symmetric functions but values of q not a root of unity yield q-deformed symmetric functions. For example, $P_{\lambda}^{q}(0, t)$ or simply $P_{\lambda}^{q}(t)$ is the q-deformation of the Hall-Littlewood symmetric function. The scalar product $\langle,\rangle_{(i)}^{(q)}$ over $\mathscr{2}(t)$ for this case follows immediately from specialization of (16) and (17).

Let us introduce another symmetric function $Q_{\lambda}^{q}(t)$ related to $P_{\lambda}^{q}(t)$ by a scalar $b_{\lambda}^{q}(t)$ as follows

$$
\begin{equation*}
Q_{\lambda}^{q}(t)=b_{\lambda}^{q}(t) P_{\lambda}^{q}(t) \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{\lambda}^{q}(t)=\prod_{i \geqslant 1} \phi_{m_{i}(\lambda)}(t) \quad \phi_{n}^{q}(t)=\prod_{j \neq 1}^{n}\left(1-t^{[j-1]_{q}}\right) . \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\langle P_{\lambda}^{q}(t), Q_{\mu}^{q}(t)\right\rangle_{(t)}^{(q)}=\delta_{\lambda \mu} \tag{25}
\end{equation*}
$$

i.e. $P_{\lambda}^{q}(t), Q_{\lambda}^{q}(t)$ are dual bases of Λ_{2} for the scalar product $\langle,\rangle_{(t)}^{(q)}$. It is easy to see that

$$
\begin{align*}
Q_{\lambda}^{q}(t) & =\prod_{i<j}\left\{\frac{1-\delta_{i j}}{1-t \delta_{i j}}\right\}_{q} q_{\lambda}^{q}(t) \\
& =\prod_{i<j}\left(1+(t-1) \delta_{i j}+\left(t^{1+q}+t\right) \delta_{i j}^{2}+\ldots\right) q_{\lambda}^{q}(t) \tag{26}
\end{align*}
$$

where $q_{\lambda}^{q}(t)$ is the projection of $Q_{\lambda}^{q}(t), \delta_{i j}$ is Young's raising operator whose action is defined as $\delta_{i j} q\left(\lambda_{1}, \ldots, \lambda_{i}, \ldots, \lambda_{j}, \ldots\right)=q\left(\lambda_{1}, \ldots, \lambda_{i}+1, \ldots, \lambda_{j}-1, \ldots\right)$.

We are now in a position to give a q-analogue of the characters of S_{n}. The characters χ_{μ}^{λ} are elements of a transition matrix that relates Schur functions to power sum symmetric functions via

$$
\begin{equation*}
s_{\lambda}=\sum_{\mu} z_{\mu}^{-1} \chi_{\mu}^{\lambda} p_{\mu} \tag{27}
\end{equation*}
$$

and in the case of the spin characters ζ_{ν}^{λ} the Q-functions are related to the power sum symmetric functions via

$$
\begin{equation*}
Q_{\lambda}=2^{[(/(\lambda)+1(\nu)+1) / 2]} \sum_{\nu} z_{\nu}^{-1} \chi_{\nu}^{\lambda} p_{\nu} . \tag{28}
\end{equation*}
$$

For $s=t, P_{\lambda}^{q}(s, t)$ reduces to the q-deformed Schur function s_{λ}^{q} and for $s=0$ and $t=-1, P_{\lambda}^{q}(s, t)$ reduces to the q-deformed Q-function Q_{λ}^{q}. Thus we are led to the q-analogue of (27) and (28) as

$$
\begin{align*}
& s_{\lambda}^{q}=\sum_{\mu}\left(z_{\mu}^{q}\right)^{-1} \chi_{\mu}^{\lambda}(q) p_{\mu}^{q} \tag{29}\\
& Q_{\Lambda}^{q}=2^{[(f(\lambda)+l(\nu)+1) / 2]} \sum_{\nu}\left(z_{\nu}^{q}\right)^{-1} \zeta_{\nu}^{\lambda}(q) p_{\nu}^{q} . \tag{30}
\end{align*}
$$

The characters $\chi_{\lambda}^{\mu}(q)$ may be calculated using the following algorithm.

1. Expand the S-function s_{λ}^{q} in terms of complete symmetric functions h_{λ}^{q} using the following

$$
\begin{equation*}
s_{\lambda}^{q}=\prod_{i<j}\left(1-\delta_{i j}\right) h_{\lambda}^{q} \tag{31}
\end{equation*}
$$

where $h_{\lambda}^{q} \equiv h_{\lambda_{1}}^{q} h_{i_{2}}^{q} h_{i_{3}}^{q} \ldots$
2. Expand h_{n}^{q} in terms of power sum symmetric functions p_{μ}^{q} as follows

$$
\begin{equation*}
h_{\eta}^{q}=\sum_{\mu}\left(z_{\mu}^{q}\right)^{-1} p_{\mu}^{q} . \tag{32}
\end{equation*}
$$

Table 1. q-dependent characters of S_{4}.

	1^{4}	21^{2}	22	31	4
4	1	1	1	1	1
31	$q+q^{2}+q^{3}$	q	-1	0	-1
22	$q^{2}+q^{4}$	$1-q$	$1+q$	-1	0
21^{2}	$q^{3}+q^{4}+q^{5}$	-1	$-q$	0	1
1^{4}	q^{6}	$-q$	q	1	-1

Table 2. q-Kostka-Foulkes polynomials $K_{\lambda \mu \mu}^{q}(t)$ for $n=4$.

	4	31	22	21^{2}	1_{-}^{4}
4	1	$t^{[0]}$	$t^{[t]}$	$t^{[2]}$	$t^{[5]}$
31		1	$t^{[0]}$	$t^{[0]}+t^{[1]}$	$t^{[2]}+t^{[3]}+t^{[4]}$
22			1	$t^{[0]}$	$t^{[1]}+t^{[3]}$
21^{2}				1	$t^{[0]}+t^{[1]}+t^{[2]}$
1^{4}					1

3. $\chi_{\lambda}^{\mu}(q)$ is now found by comparison of the coefficient of p_{μ}^{q} on both sides of (29).

The q-dependent characters for S_{4} following from (29) are given in table 1.
It is easy to see that for $q=1$ we get the usual characters of S_{4}.
As a consequence of the above discussion, we are able to give a q-analogue of Kostka-Foulkes polynomials $K_{\lambda \mu}(t)$ (cf Macdonald 1979, p 124) which appear in the following expansions

$$
\begin{align*}
& s_{\lambda}^{q}(x)=\sum_{\mu} K_{\lambda \mu}^{q}(t) P_{\mu}^{q}(x ; t) \tag{33}\\
& Q_{\lambda}^{q}(x ; t)=\sum_{\mu} K_{\lambda \mu}^{q}(t) S_{\mu}^{q}(x ; t) . \tag{34}
\end{align*}
$$

As an example the q-Kostka-Foulkes polynomials $K_{\lambda \mu}^{q}(t)$ for $n=4$ are given in table 2.

In the preceding remarks we have noted that it is possible, and we consider fruitful, to study the q-deformation of symmetric functions in a rather similar manner to that used in quantum groups. We expect the study of the q-deformation of symmetric functions to provide the basis for a more unified treatment of the theory of symmetric functions and we hope eventually to lead to physical applications.
One of us (MAS) is grateful to the University of Canterbury for the award of a Roper Scholarship for Science while the other (BGW) is appreciative of the hospitality afforded by the Physics Department of the University of Windsor.

References

Drinfeld V G 1988 Sov. Math. Dokl. 36 212-6
King R C and Wybourne B G 1990 J. Phys. A: Math. Gen. 23 Ll193-7
Macdonald I G 1979 Symmetric Functions and Hall Polynomials (Oxford: Oxford University Press)
—1988 A New Class of Symmetric Functions, Publ. IRMA Strasbourg, Actes 20th Seminaire Lotharingien 372/S-20 pp 131-71
Nimmo J J C 1990 J. Phys. A: Math. Gen. 23 751-60

