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LE'ITER TO THE EDITOR 

The q-deformation of symmetric functions and the 
symmetric group 

M A Salamt and B 0 Wybourne$$ 
t Depanment of Physics, University of Canterbury, Christchurch, New Zealand 
$ Depanment of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4 

Received 13 December 1990 

Abstract. The q-deformation of symmetric functions is introduced leading IO q-analogues 
of many well known relationships in the theory of symmetric functions. q-deformed scalar 
products are developed and used to define q-dependent symmetric functions. The symmetric 
functions commonly associated with the names Hall-Littlewood, Schur and Jack are all 
special cases of the q-deformation of Macdonald's new Symmetric functions P,(s, 1 ) .  A 
q-analogue of the spin and ordinary characters of S. is given and illustrated by the explicit 
calculation of examples of q-deformed characters. The methods used are closely parallel 
to those of quantum groups. 

Symmetric functions find many applications in physics. The Schur functions (or 
S-functions) arise naturally in the character theory of the symmetric group while the 
Hall-Littlewood functions find application in the theory of solitons (Nimmo 1990). 
Macdonald has given a definitive account of both of these types of symmetric functions 
(Macdonald 1979) as well as their various specializations such as Schur's Q-functions 
that arise in the projective representations of the symmetric group. Throughout we 
shall follow the notation defined in Macdonald's book (Macdonald 1979). 

The characters of the Hecke algebra Hn(9) of type A.-, may be calculated by 
generalizing the power sum symmetric functions as (King and Wybourne 1990) 

and for p = ( p , ,  p2,  . . .) letting 

P A 9 ;  x) = P o , ( %  X ) P p 2 ( q ;  x ) .  . . . (2) 

This could be thought of as a particular type of q-deformation of the power sum 
symmetric function. When q + 1 (1) becomes the standard relationship between power 
sum symmetric functions p , ( x )  and Schur functions s,,(x). Indeed if we introduce a 
q-number [ n ] ,  such that 

(3) 0 [ n ] ,  = 1 + q +  q 2 + .  . .+ q' 
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with [O], = 1, we may obtain a q-analogue of the usual relationship between the power 
sum symmetric functions p . ( x )  and, for example, the complete symmetric functions 
h.(x) by writing 

[ n  - Il9! h. = 

P1 -LO1 
P2 PI -U1 
P3 Pl PI 5 2 1  

P. P.-* ' .  ' PI 

(4) 

where the power sum symmetric functions p ,  =.p,(q; x). We have, for example 
i 

For q = 1 we obtain the usual result 

PI'+ ~ P x +  2P3 

6 
h, = 

The coefficients in (6) are just the numbers 

c(A)  = 2;' 

where as usual (Macdonald 1979, p 17) 

z A -  -ni '"imi!  

that is 

The q-analogue of (9) is 

where 

z? =JJ [ i - l ]T[mi - l ] , ! .  (11) 

The above results suggest that it could be useful to explore other types of q- 
deformations of symmetric functions not unlike those considered under the term of 
quantum groups (cf Drinfeld 1988). It is possible to consistently define various types 
of q-deformations of symmetric functions such as in terms of the q-numbers 

Macdonald has introduced a more general symmetric function PA(& t )  (Macdonald 
1988) indexed by partitions A and involving two indeterminates s and f. It is useful 
to consider their q-deformation. 
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Let x = (x,, x2,. . .) and y = ( y , ,  y , ,  . . .) be two sequences of indeterminates over 
2( t )  where f is another indeterminate and define (Macdonald 1979) 

A scalar product ( over 2 ( f )  may he defined as 

(P*.p+)cc,= h ' Z A ( t )  

z A ( t )  = zA n (1  

where 

Let s be another independent indeterminate and define a scalar product ( , 
over 2 ( s ,  t )  as follows 

(PA.P+)IS,l, = %,z*(s (16) 

where 

We can define a q-deformed scalar product ( , ) i z , { )  over Sq(s, t )  as 

( P A ,  P+)::.!) = % A ( s ,  t )  (18) 

where 

We call Pf(s, t )  the q-deformation of the symmetric function P,(s, t ) .  
A q-analogue of (13) can be defined as 

where 

and the notation [b }q  is used for the q-deformed expansion of b. We then have 

p&,Y;s,  t ) = ~ z ~ ( s , f ) - ' P * ( x ) P ~ ( Y ) .  (22) 

The above result follows upon computing exp(log Pq) and leads to a general definition 
of q-deformed symmetric functions in which the usual symmetric functions, such as 
Hall-Littlewood, Jack, Schur and @functions, become associated with particular 

a root of unity yield q-deformed symmetric functions. For example, Pf(0, I )  or simply 
P f ( f )  is the q-deformation of the Hall-Littlewood symmetric function. The scalar 
product (,)$I over 2 ( t )  for this case follows immediately from specialization of (16) 
and (17). 

va!..es (q, s, :I. Setting q = ! $$!d. the .....a! symmetric F..nr*ienr b..t vz!..es Cf q -9: 
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Let us introduce another symmetric function Q:(f) related to P : ( t )  by a scalar 

QXt)=b'Xt)P%t)  (23) 

b!(t )  as follows 

where 

"hen 

( P X t ) ,  QXt))%)= 6%' ( 2 5 )  

i.e. P:( I ) ,  Q:( f )  are dual bases of As for the scalar product ( , )g!. It is easy to see that 

where q : ( f )  is the projection of Q : ( f ) ,  8, is Young's raising operator whose action is 
defined as S,q(A,, . . . , A,, . . . , A,, . . . ) = q ( A , ,  . . . , A, + 1,. . . , A, - 1,. . . ). 

We are now in a position to give a q-analogue of the characters of S.. The characters 
xi are elements of a transition matrix that relates Schur functions t6  power sum 
symmetric functions via 

s* =I z;'xip* (27) 

and in the case of the spin characters S: the Q-functions are related to the power sum 
symmetric funciions via 

P 

1Z;'x:P". (28 )  I O ( l ) + l ( u ) + l ) / 2 1  Q A = ~  

For s = t, Pz(s ,  t )  reduces to the q-deformed Schur function sz and for s = 0 and 
f = -1, P:(s, t)  reduces to the q-deformed @function Q:. Thus we are led to the 
q-analogue of (27) and (28) as 

The characters x:(q) may be calculated using the following algorithm. 

1. Expand the S-function s: in terms of complete symmetric functions h: using the 
following 

where I t :  = hf ,hr2hf ,  ~ I : 

2. Expand h: in terms of power sum symmetric functions p :  as follows 

h Z = z  ( z z ) - 'p : ,  
8 .  
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Table 1. q-dependent characters of S, 

L321 

i4 212 22 31 4 

4 1 I 1 1 1 
31 4+9'+q' . 4 -1 0 -1  
22 q1+q4 I -q  I + q  -1 0 
212 4 ' + q 4 + q 5  - I  -4 0 1 
1' a' --I? (I I - I  

Table 2. q-Kostka-Foulkes polynomials K:, , ( t )  for n =4. 

4 31 22 21' If 
4 1 tIol p 1  p 1  p 1  

31 I ,101 1101+1[11 ~ i21+1Dl+t1 ' l  

212 1 p+ p 1 +  (L21 

I' 1 

22 1 l I11+ tl3l 

3. ,y:(q) is now found by comparison of the coefficient of p z  on both sides of (29). 

The q-dependent characters for Sn following from (29) are given in table 1. 
It  is easy to see that for q = 1 we get the usual characters of S,. 
As a consequence of the above discussion, we are able to give a q-analogue of 

Kostka-Foulkes polynomials &,(I)  (cf Macdonald 1979, p 124) which appear in the 
following expansions 

SXX) =I Kf,(I)P:(x; 1 )  (33) 

o x x ;  t ) = L  q* (w: (x ;  1 ) .  (34) 
(L 

6. 

As an example the q-Kostka-Foulkes polynomials K & ( t )  for n = 4  are given in 
iabie 2. 

In the preceding remarks we have noted that it is possible, and we consider fruitful, 
to study the q-deformation of symmetric functions in a rather similar manner to that 
used in quantum groups. We expect the study of the q-deformation of symmetric 
functions to provide the basis for a more unified treatment of the theory of symmetric 
functions and we hope eventually to lead to physical applications. 

One of us (MAS) is grateful to the University of Canterbury for the award of a Roper 
Scholarship for Science while the other (BGW) is appreciative of the hospitality 
afforded by the Physics Department of the University of Windsor. 
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